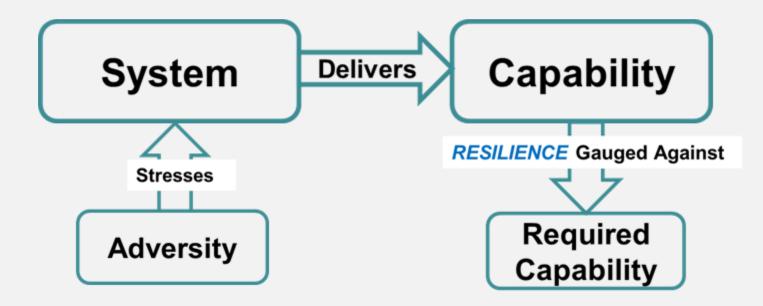
PERSPECTIVE ON SYSTEM RESILIENCE


Delivery of Services by a System when encountering Adversity

It is a fact of life that engineered things will fail

We need the humility to accept that we cannot make unfailable systems – we need to find ways to accommodate the failure of items in a way that is tolerable

RESILIENCE

• Resilience is the ability to provide required capability when facing adversity

Copies from SEBoK: General Depiction of Resilience (Brtis & McEveley 2016,

PURPOSE OF SYSTEMS

- Systems are developed to provide service to owners and users
 - Focus is on the provision of service
 - Or on enabling projection of intent
- An engineered system is a means to enable the person leading deployment to effect intent
 - Therefore the engineered system is a means that enable capability

HEIDEGGER

- Heidegger, in *Being and Time*, introduced two 'modes of being'
 - Pure Being focus is on the properties and behaviour of the material of which tings ar made
 - Behaviour and properties of designed things can be predicted through knowledge of sciences and the configuration
 - Process Being focus is on the entity as means to do something
 - If the entity can perform an action, then it is a useful
 - If it is broken it cannot perform its intended action which reduces it to be just stuff and to be known in terms of the pure being

APPROACH TO RESILIENCE

- The focus needs to be on the provision of the service
- Service can be provided by one very resilient instance of the system
 - Emphasis is on avoiding the system breaking
 - Reliability to protect from internal adversities
 - Robustness to withstand external adversities
 - Maintainability to ensure short outages (or diminutions of performance)
 - This approach is likely to be very expensive
 - This approach is necessary, and justified, for systems with very high consequence of major failure

APPROACH TO RESILIENCE

- Service can be provided by a fleet of reasonably resilient instances of the system
 - Emphasis is on understanding the availability of each instance of the system
 - Reliability must be understood
 - Robustness to withstand external adversities
 - Maintainability to ensure individual instance outages (or diminutions of performance) can be managed in the context of the support arrangements
 - This may be significantly cheaper than attempting to make each instance very reliable, maintainable and have high survivability
 - This approach is suitable for systems where it is possible to switch system instance that provides the service

MEASUREMENT OF RESILIENCE

- Measurement of anything requires clear description of the manifestation and its definition
- The challenge of measuring resilience involves the complications:
 - Achievement of resilience in different systems context manifests in different ways
 - A function of the nature of the system and its purpose
 - There is diversity of what is appropriate response to adversities
 - Resilience is a compounded manifestation involving:
 - Pre adversity encounter
 - Adversity encounter
 - Post adversity encounter
 - Phase
 - Resilience is observed in the actual life of a system which in turn depends on the events that happen during the life
- These factors prevent an absolute measure of resilience
 - All is not lost rational engineering action does not need an absolute scale

NO NEED FOR AN ABSOLUTE SCALE

- The engineering task is to develop systems for purposes
- During design various design ideas (alternatives) are generated
 - The question to ask is whether an alternative can deliver the resilience characteristics that matter for the situation
- Engineering decisions involve selection between alternatives
 - The alternatives that can be considered are the alternatives that have been proposed in the design process -i.e. what we have thought of
 - The best we can achieve is a selection of the best alternative we have thought of there can be no assurance that the solution we choose is the best possible
- Consequence:
 - An engineering useful measure of resilience must be usable through analysis of expected performance of a system under adversity
 - This will provide a rational basis for choice of alternatives during design
 - Alternatives can be compared with each other
 - Resilience can be measured on an Ordinal Scale (Interval or Ratio scales are impossible)

MEASURING RESILIENCE

- In design it is normal to conduct a trade-off analysis of the performance of a system e.g. using AHP
 - This reflects the multi-dimensional achievement of a system and the relative importance of each dimension and the value for scale of achievement in each dimension
 - This is a method of resolving multi-dimensional performance into a single measure of 'goodness', and enables alternatives to be compared
 - Traditionally this is done in the static situation of 'if everything is working correctly'
- The AHP process reflects what is important to the stakeholders
- An Ordinal Scale of Resilience can be constructed by integrating the AHP process through the lifecycle
 - This needs:
 - Modelling of system performance with failures of each subsystem or component, taken singly or in combination
 - Estimation of the probability of each class of failure (all causes combined)
 - Estimation of time to restore failures
 - Modelling the lifecycle of failures and repairs using Monte Carlo analysis and a large number of lifecycles to determine a distribution of AHP outcomes
 - Compare alternatives by comparing the distributions to decide which distribution (which alternative) provides the most suitable outcome

THANK YOU